3.487 \(\int \frac{1}{(1-a^2 x^2)^{3/2} \tanh ^{-1}(a x)^2} \, dx\)

Optimal. Leaf size=35 \[ \frac{\text{Shi}\left (\tanh ^{-1}(a x)\right )}{a}-\frac{1}{a \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)} \]

[Out]

-(1/(a*Sqrt[1 - a^2*x^2]*ArcTanh[a*x])) + SinhIntegral[ArcTanh[a*x]]/a

________________________________________________________________________________________

Rubi [A]  time = 0.123095, antiderivative size = 35, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {5966, 6034, 3298} \[ \frac{\text{Shi}\left (\tanh ^{-1}(a x)\right )}{a}-\frac{1}{a \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)} \]

Antiderivative was successfully verified.

[In]

Int[1/((1 - a^2*x^2)^(3/2)*ArcTanh[a*x]^2),x]

[Out]

-(1/(a*Sqrt[1 - a^2*x^2]*ArcTanh[a*x])) + SinhIntegral[ArcTanh[a*x]]/a

Rule 5966

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[((d + e*x^2)^(q + 1
)*(a + b*ArcTanh[c*x])^(p + 1))/(b*c*d*(p + 1)), x] + Dist[(2*c*(q + 1))/(b*(p + 1)), Int[x*(d + e*x^2)^q*(a +
 b*ArcTanh[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && LtQ[p, -1]

Rule 6034

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(
m + 1), Subst[Int[((a + b*x)^p*Sinh[x]^m)/Cosh[x]^(m + 2*(q + 1)), x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c,
 d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{1}{\left (1-a^2 x^2\right )^{3/2} \tanh ^{-1}(a x)^2} \, dx &=-\frac{1}{a \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}+a \int \frac{x}{\left (1-a^2 x^2\right )^{3/2} \tanh ^{-1}(a x)} \, dx\\ &=-\frac{1}{a \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}+\frac{\operatorname{Subst}\left (\int \frac{\sinh (x)}{x} \, dx,x,\tanh ^{-1}(a x)\right )}{a}\\ &=-\frac{1}{a \sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}+\frac{\text{Shi}\left (\tanh ^{-1}(a x)\right )}{a}\\ \end{align*}

Mathematica [A]  time = 0.110464, size = 32, normalized size = 0.91 \[ \frac{\text{Shi}\left (\tanh ^{-1}(a x)\right )-\frac{1}{\sqrt{1-a^2 x^2} \tanh ^{-1}(a x)}}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((1 - a^2*x^2)^(3/2)*ArcTanh[a*x]^2),x]

[Out]

(-(1/(Sqrt[1 - a^2*x^2]*ArcTanh[a*x])) + SinhIntegral[ArcTanh[a*x]])/a

________________________________________________________________________________________

Maple [A]  time = 0.24, size = 62, normalized size = 1.8 \begin{align*}{\frac{1}{a{\it Artanh} \left ( ax \right ) \left ({a}^{2}{x}^{2}-1 \right ) } \left ({\it Artanh} \left ( ax \right ){\it Shi} \left ({\it Artanh} \left ( ax \right ) \right ){x}^{2}{a}^{2}-{\it Shi} \left ({\it Artanh} \left ( ax \right ) \right ){\it Artanh} \left ( ax \right ) +\sqrt{-{a}^{2}{x}^{2}+1} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-a^2*x^2+1)^(3/2)/arctanh(a*x)^2,x)

[Out]

1/a*(arctanh(a*x)*Shi(arctanh(a*x))*x^2*a^2-Shi(arctanh(a*x))*arctanh(a*x)+(-a^2*x^2+1)^(1/2))/arctanh(a*x)/(a
^2*x^2-1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}} \operatorname{artanh}\left (a x\right )^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-a^2*x^2+1)^(3/2)/arctanh(a*x)^2,x, algorithm="maxima")

[Out]

integrate(1/((-a^2*x^2 + 1)^(3/2)*arctanh(a*x)^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-a^{2} x^{2} + 1}}{{\left (a^{4} x^{4} - 2 \, a^{2} x^{2} + 1\right )} \operatorname{artanh}\left (a x\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-a^2*x^2+1)^(3/2)/arctanh(a*x)^2,x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)/((a^4*x^4 - 2*a^2*x^2 + 1)*arctanh(a*x)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}} \operatorname{atanh}^{2}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-a**2*x**2+1)**(3/2)/atanh(a*x)**2,x)

[Out]

Integral(1/((-(a*x - 1)*(a*x + 1))**(3/2)*atanh(a*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}} \operatorname{artanh}\left (a x\right )^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-a^2*x^2+1)^(3/2)/arctanh(a*x)^2,x, algorithm="giac")

[Out]

integrate(1/((-a^2*x^2 + 1)^(3/2)*arctanh(a*x)^2), x)